Different types of Cell
A primary cell or battery is one that cannot easily be recharged after one use, and are discarded following discharge. Most primary cells utilize electrolytes that are contained within absorbent material or a separator and are thus termed dry cells.
A secondary cell or battery is one that can be electrically recharged after use to their original pre-discharge condition, by passing current through the circuit in the opposite direction to the current during discharge.
Secondary batteries fall into two sub-categories depending on their intended applications.
- Cells that are utilized as energy storage devices, delivering energy on demand. Such cells are typically connected to primary power sources so as to be fully charged on demand. Examples of these type of secondary cells include emergency no-fail and standby power sources, aircraft systems and stationary energy storage systems for load-leveling.
- Cells that are essentially utilized as primary cells, but are recharged after use rather than being discarded. Examples of these types of secondary cells primarily include portable consumer electronics and electric vehicles.
A third battery category is commonly referred to as the reserve cell. What differentiates the reserve cell from primary and secondary cells in the fact that a key component of the cell is separated from the remaining components, until just prior to activation. The component most often isolated is the electrolyte. This battery structure is commonly observed in thermal batteries, whereby the electrolyte remains inactive in a solid state until the melting point of the electrolyte is reached, allowing for ionic conduction, thus activating the battery. Reserve batteries effectively eliminate the possibility of self-discharge and minimize chemical deterioration. Most reserve batteries are used only once and then discarded. Reserve batteries are used in timing, temperature and pressure sensitive detonation devices in missiles, torpedoes, and other weapon systems.
Reserve cells are typically classified into the following 4 categories.
- Water activated batteries.
- Electrolyte activated batteries.
- Gas activated batteries.
- Heat activated batteries.
The fuel cell represents the fourth category of batteries. Fuel cells are similar to batteries except for the fact that that all active materials are not an integral part of the device (as in a battery). In fuel cells, active materials are fed into batteries from an outside source. The fuel cell differs from a battery in that it possesses the capability to produce electrical energy as long as active materials are fed to the electrodes, but stop operating in the absence of such materials. A well-known application of fuel cells has been in cryogenic fuels used in space vehicles. Use of fuel cell technology for terrestrial applications has been slow to develop, although recent advances have generated a revitalized interest in a variety of systems with applications such as utility power, load-leveling, on-site generators and electric vehicles.
Different types of circuits
A closed circuit has a complete path. A open circuit does not. In order for a circuit to work, it must be closed; thus, open circuits aren’t functional. That may be a hard idea to grasp at first, but circuits are very different from open restaurants or open doors. When a circuit is open, the current can’t flow through. When there is a faulty electrical wire or electronic component in a circuit or the switch is Off, then it is called Open Circuit.
A series circuit is a circuit in which the same current flows through all components of the circuit. The current only has one path to take. If you’ve ever had trouble with Christmas lights, you might know a little about series circuits. If the lights are constructed in a series, when one bulb is missing or burnt out, the current cannot flow and the lights won’t turn on. Series circuits can be very frustrating because if they don’t work, you have to figure out which piece is responsible for the whole.
A parallel circuit is a circuit in which the components are arranged so that the current must break up (with bits flowing across each parallel branch) before meeting and combining again. Because the current divides, each component is assured a charge. And if one path breaks, the other paths will still work because they aren’t reliant on each other. Houses are always built with parallel circuits so that if one light burns out, your entire house won’t lose power.
A short circuit is a circuit that allows the current to travel along an unintended path. In this way, it encounters little (or no) resistance. The piece of the circuit bypassed by the short circuit may cease to function and a large amount of current may begin flowing. This causes the wires to heat up and can potentially cause a fire. As we’ve already discussed, circuit breakers and fuse boxes are put in place to cut off circuits as a safety measure when a short circuit occurs. A short circuit is not, as some believe, just any electrical malfunction.
MPPCS Notes brings Prelims and Mains programs for MPPCS Prelims and MPPCS Mains Exam preparation. Various Programs initiated by MPPCS Notes are as follows:-
- MPPCS Mains 2024 Tests and Notes Program
- MPPCS Prelims Exam 2024- Test Series and Notes Program
- MPPCS Prelims and Mains 2024 Tests Series and Notes Program
- MPPCS Detailed Complete Prelims Notes