Compound Interest
- Let Principal = P, Rate = R% per annum, Time = n
- When interest is compound Annually:
Amount = P | 1 + | R | n | ||
100 |
- When interest is compounded Half-yearly:
Amount = P | 1 + | (R/2) | 2n | ||
100 |
- When interest is compounded Quarterly:
Amount = P | 1 + | (R/4) | 4n | ||
100 |
- When interest is compounded Annually but time is in fraction, say 3
Amount = P | 1 + | R | 3 | x | 1 + | R | ||||
100 | 100 |
- When Rates are different for different years, say R1%, R2%, R3% for 1st, 2ndand 3rd year respectively.
Then, Amount = P | 1 + | R1 | 1 + | R2 | 1 + | R3 | . | ||||||
100 | 100 | 100 |
- Present worth of Rs. xdue n years hence is given by:
Present Worth = | x | . | |||
|
Questions:
Level-I:
1. | A bank offers 5% compound interest calculated on half-yearly basis. A customer deposits Rs. 1600 each on 1stJanuary and 1st July of a year. At the end of the year, the amount he would have gained by way of interest is: | |||||||
|
2. | The difference between simple and compound interests compounded annually on a certain sum of money for 2 years at 4% per annum is Re. 1. The sum (in Rs.) is: | |||||||
|
3. | There is 60% increase in an amount in 6 years at simple interest. What will be the compound interest of Rs. 12,000 after 3 years at the same rate? | |||||||||
|
4. | What is the difference between the compound interests on Rs. 5000 for 1 years at 4% per annum compounded yearly and half-yearly? | |||||||
|
5. | The compound interest on Rs. 30,000 at 7% per annum is Rs. 4347. The period (in years) is: | ||||||||||
| |||||||||||
6. | What will be the compound interest on a sum of Rs. 25,000 after 3 years at the rate of 12 p.c.p.a.? | ||||||||||
|
7. | At what rate of compound interest per annum will a sum of Rs. 1200 become Rs. 1348.32 in 2 years? | |||||||
|
8. | The least number of complete years in which a sum of money put out at 20% compound interest will be more than doubled is: | |||||||
|
9. | Albert invested an amount of Rs. 8000 in a fixed deposit scheme for 2 years at compound interest rate 5 p.c.p.a. How much amount will Albert get on maturity of the fixed deposit? | |||||||
|
10. | The effective annual rate of interest corresponding to a nominal rate of 6% per annum payable half-yearly is: | |||||||
| ||||||||
11. |
Level-II:
Simple interest on a certain sum of money for 3 years at 8% per annum is half the compound interest on Rs. 4000 for 2 years at 10% per annum. The sum placed on simple interest is: | |||||||
|
12. | If the simple interest on a sum of money for 2 years at 5% per annum is Rs. 50, what is the compound interest on the same at the same rate and for the same time? | |||||||
|
13. | The difference between simple interest and compound on Rs. 1200 for one year at 10% per annum reckoned half-yearly is: | |||||||||
|
14. | The difference between compound interest and simple interest on an amount of Rs. 15,000 for 2 years is Rs. 96. What is the rate of interest per annum? | |||||||||
|
15. | The compound interest on a certain sum for 2 years at 10% per annum is Rs. 525. The simple interest on the same sum for double the time at half the rate percent per annum is: | |||||||||
| ||||||||||
16. |
| |||||||||
|
17. |
| |||||||||
|
18. |
| |||||||||
|
Answers:
Level-I:
Answer:1 Option B
Explanation:
Amount |
| ||||||||||||||||
| |||||||||||||||||
| |||||||||||||||||
| |||||||||||||||||
= Rs. 3321. |
- I. = Rs. (3321 – 3200) = Rs. 121
Answer:2 Option A
Explanation:
Let the sum be Rs. x. Then,
C.I. = | x | 1 + | 4 | 2 | – x | = | 676 | x | – x | = | 51 | x. | ||||||
100 | 625 | 625 |
S.I. = | x x 4 x 2 | = | 2x | . | ||
100 | 25 |
51x | – | 2x | = 1 | |
625 | 25 |
- x= 625.
Answer:3 Option C
Explanation:
Let P = Rs. 100. Then, S.I. Rs. 60 and T = 6 years.
R = | 100 x 60 | = 10% p.a. | ||
100 x 6 |
Now, P = Rs. 12000. T = 3 years and R = 10% p.a.
C.I. |
| |||||||||||||
| ||||||||||||||
= 3972. |
Answer:4 Option A
Explanation:
C.I. when interest compounded yearly |
| |||||||||||||||
| ||||||||||||||||
= Rs. 5304. |
C.I. when interest is compounded half-yearly |
| ||||||||||||
| |||||||||||||
= Rs. 5306.04 |
Difference = Rs. (5306.04 – 5304) = Rs. 2.04
Answer:5 Option A
Explanation:
Amount = Rs. (30000 + 4347) = Rs. 34347.
Let the time be n years.
Then, 30000 | 1 + | 7 | n | = 34347 | ||
100 |
107 | n | = | 34347 | = | 11449 | = | 107 | 2 | |||||
100 | 30000 | 10000 | 100 |
n = 2 years.
Answer:6 Option C
Explanation:
Amount |
| ||||||||||||
| |||||||||||||
= Rs. 35123.20 |
C.I. = Rs. (35123.20 – 25000) = Rs. 10123.20
Answer:7 Option A
Explanation:
Let the rate be R% p.a.
Then, 1200 x | 1 + | R | 2 | = 1348.32 | ||
100 |
1 + | R | 2 | = | 134832 | = | 11236 | |||
100 | 120000 | 10000 |
1 + | R | 2 | = | 106 | 2 | |||||
100 | 100 |
1 + | R | = | 106 |
100 | 100 |
R = 6%
Answer:8 Option B
Explanation:
P | 1 + | 20 | n | > 2P | 6 | n | > 2. | |||||
100 | 5 |
Now, | 6 | x | 6 | x | 6 | x | 6 | > 2. | ||
5 | 5 | 5 | 5 |
So, n = 4 years.
Answer:9 Option C
Explanation:
Amount |
| ||||||||||
| |||||||||||
= Rs. 8820. |
Answer:10 Option D
Explanation:
Amount of Rs. 100 for 1 year when compounded half-yearly | = Rs. | 100 x | 1 + | 3 | 2 | = Rs. 106.09 | |||||
100 |
Effective rate = (106.09 – 100)% = 6.09%
Answer:11 Option C
Explanation:
C.I. |
| |||||||||||
| ||||||||||||
= Rs. 840. |
Sum = Rs. | 420 x 100 | = Rs. 1750. | ||
3 x 8 |
Answer:12 Option A
Explanation:
Sum = Rs. | 50 x 100 | = Rs. 500. | ||
2 x 5 |
Amount |
| ||||||||||
| |||||||||||
= Rs. 551.25 |
- I. = Rs. (551.25 – 500) = Rs. 51.25
Answer:13 Option B
Explanation:
S.I. = Rs | 1200 x 10 x 1 | = Rs. 120. | ||
100 |
C.I. = Rs. | 1200 x | 1 + | 5 | 2 | – 1200 | = Rs. 123. | ||||
100 |
Difference = Rs. (123 – 120) = Rs. 3.
Answer:14 Option A
Explanation:
15000 x | 1 + | R | 2 | – 15000 | – | 15000 x R x 2 | = 96 | |||||||
100 | 100 |
15000 | 1 + | R | 2 | – 1 – | 2R | = 96 | ||||
100 | 100 |
15000 | (100 + R)2 – 10000 – (200 x R) | = 96 | ||
10000 |
R2 = | 96 x 2 | = 64 | ||
3 |
R = 8.
Rate = 8%.
Answer:15 Option B
Explanation:
Let the sum be Rs. P.
Then, | P | 1 + | 10 | 2 | – P | = 525 | ||||
100 |
P | 11 | 2 | – 1 | = 525 | |||||
10 |
P = | 525 x 100 | = 2500. | ||
21 |
Sum = Rs . 2500.
So, S.I. = Rs. | 2500 x 5 x 4 | = Rs. 500 | ||
100 |
Answer:16 Option D
Explanation:
Let Principal = Rs. P and Rate = R% p.a. Then,
Amount = Rs. | P | 1 + | R | 4 | ||||
100 |
C.I. = | P | 1 + | R | 4 | – 1 | ||||
100 |
P | 1 + | R | 4 | – 1 | = 1491. | |||||
100 |
Clearly, it does not give the answer.
Correct answer is (D).
Answer:17 Option C
Explanation:
I. Amount = Rs. | 200 x | 1 + | 6 | 16 | ||||
100 |
II. Amount = Rs. | 200 x | 1 + | 6 | 16 | ||||
100 |
Thus, I as well as II gives the answer.
Correct answer is (C).
Answer:18 Option E
Explanation:
Given: T = 3 years.
- gives: R = 8% p.a.
- gives: S.I. = Rs. 1200.
Thus, P = Rs. 5000, R = 8% p.a. and T = 3 years.
Difference between C.I. and S.I. may be obtained.
So, the correct answer is (E).
MPPCS Notes brings Prelims and Mains programs for MPPCS Prelims and MPPCS Mains Exam preparation. Various Programs initiated by MPPCS Notes are as follows:-
- MPPCS Mains 2024 Tests and Notes Program
- MPPCS Prelims Exam 2024- Test Series and Notes Program
- MPPCS Prelims and Mains 2024 Tests Series and Notes Program
- MPPCS Detailed Complete Prelims Notes